Master of Athletic Training

Trine University

Listed below are the equivalent required courses from the institution listed above needed to satisfy prerequisite requirements for admission to the Manchester University Master of Athletic Training Program.

Required Prerequisites	Equivalent Trine University Course	Semester Hours
Human Anatomy	BIO 384 Human Anatomy & Physiology I	4
Human Anatomy Lab	BIO 384L Human Anatomy & Physiology I Lab	0
Human Physiology	BIO 394 Human Anatomy & Physiology II	4
Human Physiology Lab	BIO 394L Human Anatomy & Physiology II Lab	0
Exercise Physiology with Lab	EXS 353 Exercise Physiology	3
Kinesiology/Biomechanics	EXS 333 Kinesiology	3
Nutrition	EXS 273 Nutrition	3
Fitness and Exercise Prescription	EXS 283 Fitness Evaluation Assessments	3
Introduction to Psychology	PSY 113 Principles of Psychology	3
Statistical Analysis*	MA 253 Statistics	3
Physics course (any level)	Various options	3
Chemistry course (any level)	Various options	3
	TOTAL SEMESTER HOURS	32

Notes:

- Classes based on the most recently available school year catalog
- * The statistical analysis pre-req should align closely with the MU MATH 210 STATISTICAL ANALYSIS course description: "An introduction to statistical techniques used in the social and natural sciences. Topics include: graphical and numerical summaries of data; sampling and experimental design; elementary probability; binomial, uniform, normal, student's t, and chi-squared distributions; hypothesis tests and confidence intervals for means and proportions, ANOVA, and linear regression."