THORACIC OUTLET SYNDROME AND THE OVERHEAD ATHLETE

LISA PIROPATO, PT, DPT, ATC

NORTHEAST INDIANA SPORTS MEDICINE SYMPOSIUM

MARCH 25, 2017
LEARNING OBJECTIVES

• Explain the etiologies of thoracic outlet syndrome.

• Differentiate between the types of vascular and neurologic thoracic outlet syndrome.

• Identify effective treatment and management strategies incorporating muscle strengthening and neuromuscular control of the upper extremity for patients presenting with thoracic outlet symptoms.

• Recommend a return to activity program for overhead athletes following conservative or non-conservative treatment.
WHAT IS THORACIC OUTLET SYNDROME (TOS)?

• Term outlines the location without defining what comprises the problem
• Compression of the neurovascular structures in the interscalene triangle
• Subcategorized as arterial or venous and neurogenic
 • NTOS subcategorized into true or disputed
 • True: condition with objective diagnostic findings
 • Disputed: condition without objective findings
• 90% of all cases are NTOS, <1% arterial, 3-5% venous
 • Combined TOS: vascular and neurological structures involvement
PATHOANATOMY

• 3 confined spaces from cervical spine to lower pec minor muscles
 1. Interscalene triangle
 2. Costoclavicular space
 3. Thoraco-coraco-pectoral (retropectoralis minor) space
BONY CAUSES

• Cervical ribs <1% of general population

• Abnormal 1st rib or clavicle
 • Exotosis, tumor, callus, fracture

• Clavicle fracture – malunion, fragmentation, retrosternal dislocation
 • Normal movement is essential – ACJ & SCJ
SOFT TISSUE CAUSES

• Abnormalities may create compression or tension of the neurovascular structures

• Congenital abnormalities with anatomic variation of scalene muscles
<table>
<thead>
<tr>
<th>Arterial</th>
<th>Venous</th>
<th>True Neurogenic</th>
<th>Disputed Neurogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young adults</td>
<td>Younger men</td>
<td>History of neck trauma</td>
<td>History of neck trauma</td>
</tr>
<tr>
<td>Hx of vigorous arm activity or spontaneous</td>
<td>Preceded by excessive activity in the arm or spontaneous</td>
<td>MVA or repetitive stress at work</td>
<td>MVA or repetitive stress at work</td>
</tr>
<tr>
<td>Pain in hand</td>
<td>Edema of the arm</td>
<td>Pain, paresthesia, numbness &/or weakness in hand/arm/shld (C8-T1)</td>
<td>Pain, paresthesia, numbness &/or weakness in hand/arm/shld (C8-T1)</td>
</tr>
<tr>
<td>Seldom in shld/neck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pallor</td>
<td>Cyanosis</td>
<td>Occipital HA's</td>
<td>Occipital HA's</td>
</tr>
<tr>
<td>Claudication</td>
<td>Feeling of heaviness</td>
<td>Cold intolerance – Raynaud phenomenon</td>
<td>Cold intolerance – Raynaud phenomenon</td>
</tr>
<tr>
<td>Coldness and cold intolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasthesias</td>
<td>Parasthesias in fingers and hand (secondary to edema)</td>
<td>Paresthesias, numbness during the day and at night “compressors”= sx day > noc</td>
<td>Paresthesias, numbness during the day and at night “releasers”= sx noc > day</td>
</tr>
<tr>
<td>Sxs spontaneously stem from aa emboli</td>
<td></td>
<td>Loss of dexterity</td>
<td>Loss of dexterity</td>
</tr>
<tr>
<td>Diagnosis by history</td>
<td>Diagnosis by history</td>
<td>Diagnosis by history and cluster of 2 provocation tests (+) and almost always (+) elevated arm stress test</td>
<td>Diagnosis by history and cluster of 2 provocation tests (+) and almost always (+) elevated arm stress test</td>
</tr>
<tr>
<td></td>
<td>Diagnosis by history</td>
<td>Objectified weakness &/or sensory = “true”</td>
<td>Subjective weakness &/or sensory = “true”</td>
</tr>
<tr>
<td>Diagnosis confirmed through doppler US and angiography in seated position</td>
<td>Diagnosis confirmed through venous US, venous scintillation scans, venography and plethysmography</td>
<td>Diagnosis confirmed through (+) neurophysiological testing</td>
<td>No confirmation through objective testing neurophysiological testing are normal</td>
</tr>
</tbody>
</table>
SYMPTOMS

- Radicular vs. non radicular
- Paresthesia in upper limb
- Neck pain
- Trapezius pain
- Shoulder and/or arm pain
- Supraclavicular pain
- Chest pain
- Occipital headache
- Paresthesias of all 5 fingers or 4/5 only or 1-3 only
PRESENTATION

• Rounded shoulders
• Forward head
• Increased thoracic kyphosis
• Anterior tilt/downward rotation/depression scapulae

INCREASES TENSION LOADING OF THE BRACHIAL PLEXUS
CLINICAL TESTING

• Roos/elevated arm stress
• Supraclavicular pressure test
• Adson's test
• Costoclavicular maneuver/
 Military Brace
• Wright’s test/ hyperabduction test
• Cyriax release test
• Upper limb neural tension test**
DIAGNOSTIC TESTING

• Venous TOS
 • Venous US
 • Venous scintillation scans
 • Venography
 • Plethysmography

• Arterial TOS
 • Doppler US
 • Angiography

• True NTOS
 • Nerve conduction velocities
 • Electromyography
MANAGEMENT

SURGICAL
ARTERIAL TOS

• **Goal:** decompression of structures compression subclavian artery, repair artery, and restore distal blood flow

• Thrombolytic therapy or thrombolectomy for acute ischemia

• Distal bypass grafting or formal arterial reconstruction for chronic symptoms
VENOUS TOS

• Thrombolytic therapy is 1st line to dissolve acute thrombosis
• Angioplasty to decompress venous stenosis
• If unsuccessful
 • Vein patch angioplasty or venous bypass in order to restore normal circulation
NTOS: SURGICAL DECOMPRESSION

- Goal: relieve mechanical load on neurovascular structures
- Resection of 1st rib, cervical ribs
- Anterior and middle scalenectomies
- Performed for those with true neurological symptoms
 - Weakness
 - Wasting of hand intrinsic muscles
 - NCV less than 60m/sec (norm: 85m/sec)
- Fail conservative therapy
MANAGEMENT

NONSURGICAL/CONSERVATIVE
DISCLAIMER: WE CAN MAKE THESE PATIENTS WORSE IF NOT MANAGED CORRECTLY!!!!!!
CONSERVATIVE

• Poor outcomes associated with obesity, worker’s compensation, and double crush pathology (cubital or carpal tunnel)

• Focus of treatment: SYMPTOM REDUCTION

• NSAIDs – reduce pain and inflammation

• Botox injection – anterior and middle scalenes
PT MANAGEMENT

• Restore normal arthrokinematics of surrounding joints
 • 1st rib mobility
 • SC and AC joints

• Correcting related muscle weaknesses and imbalances
 • Diaphragmatic breathing
 • Scalene muscles
 • Pectoralis major and minor
 • Posture
 • All therapeutic exercises should focus on muscle endurance rather than strength
PT MANAGEMENT

• Improve nerve mobility to decrease tension on brachial plexus
 • Neural mobilizations
 • Emphasize proximally with 1st rib inferior mobilizations
 • All mobilizations should be pain free
 • Start at 20 repetitions and increase up to 100 repetitions as tolerated for 1-2x/day

• Unloading tape

• Sleep adjustments
REHAB EXERCISES

- Multi angle isometrics
- Prone row
- Prone extension
- Rhythmic stabilization
- Weight bearing
- Elevation in scapular plane
- Thoracic extension and rotation
- Neural flossing/mobilizations
- Deep cervical flexion
- Core activation
APPLICATION TO OVERHEAD ATHLETE
“ONE OF THE MOST DIFFICULT UPPER LIMB CONDITIONS TO MANAGE”

WATSON³
CONSIDERATIONS

• TOS: pain, paresthesia, weakness, & discomfort in UE aggravated by elevation of the arms or movement of head/neck

• Repeated overuse in the overhead position

• GH instability

• “Double crush” – proximal compression could cause compression at distal sites along the nerve
ROM PROGRESSION

• Scapular position in lower ranges (<30 deg ABD)
• 45-90 deg ABD
• Flexion control – use of serratus anterior without pec minor recruitment concentrically and eccentrically
• >90 deg ABD
SPECIAL PRECAUTIONS

• Do not OVER retract – may create a relative entrapment of retropectoralis minor space

• Careful with ER since may provoke neurological symptoms
 • Add once patients have sufficient scapular control
 • May be too aggressive for some patients
RETURN TO SPORT5

- High physical performance demands
- Pressure to return to previous level of performance
- Timeframes NTOS
 - 11 months out of sport prior to surgery
 - 4.4 months full return following surgery
- Successful conservative approach
 - shorter duration of symptoms prior to beginning PT (3 months vs. 15 months)
 - Lower quick DASH baseline score
- 81.5% successfully return to full activity
• Different complaints from classic swimmer’s shoulder (MDI/impingment)
• No GH instability
• Pain both anterior and posterior to clavicle
• Radicular symptoms
• Inability to keep fingers together to control hand movement during the pull-through phase
THROWING

• Trouble with grabbing, holding, and throwing ball due to loss of intrinsic muscle strength of hand
• Career-threatening
• Study showed postop pitching performance largely equivalent to before tx
• Gradual recovery is crucial (~1 year postop for MLB pitchers)
REFERENCES

