Upper Extremity Return to Play

Matthew M. Redshaw PT, DPT, CSCS

Learning Objectives

- At the conclusion of the presentation, the participant should be able to:
- Explain what functional tests are best to be used with UE return to paly decisions.
- Identify the tools needed to assist in making RTP decisions.
- Demonstrate the use of total arc in measuring shoulder ROM for UE athletes.
- Develop and understand a matrix of objective measures to assist with UE return play decisions.
- Recommend a return to play rehabilitation protocol for patients with UE injuries.

Who is this guy?

- BS in Health Promotion from the University of Iowa
- Doctorate in Physical Therapy from the University of Indianapolis
- 9.5 years of clinical experience
- Certified Strength and Conditioning Specialist

Agenda

- Strength and ROM
- Upper Extremity Functional Tests
- Outcome Measures
- Mechanics
- Throwing Protocol
- RTP Matrix

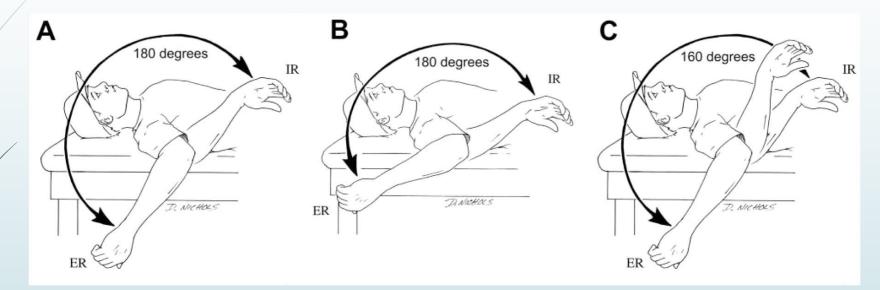
Strength and ROM

- Strength
 - Equal side to side
 - Isokinetic testing¹
 - Gold standard
 - Not practical
 - Manual Muscle testing
 - Hand held dynamometer²
 - Functional strength tests

► ROM

- Equal side to side
- Total Arc
 - ■IR + ER= Total Arc

Shoulder Overview Range of Motion – Active & Passive

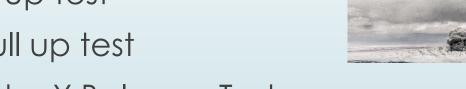

General Population PROM Throughout the Age Spectrum

	Motion	10-19 years ³	20-39 years ³	40-54 years ³	60-85 years ⁴
	FLEX	167.4	165	165.1	160
	EXT	64	58	56.1	38
	IR	70.3	66.5	68.3	59
	ER	106.3	101	97.5	76
/	ABD	185.1	182.7	182.6	155

Athletic Population PROM & AROM

Motion	Baseball Players PROM ⁵	Baseball Players AROM ⁶	Tennis Players AROM ⁶
ER	129.9	103.2	103.7
IR	62.6	42.4	45.4

Total Motion Concept – "Total Arc" Definition



The total motion concept. The combination of external rotation (ER) and internal rotation (IR) equals total motion and is equal bilaterally in overhead athletes, although shifted posteriorly in the dominant (A) versus non-dominant (B) shoulder. Pathological loss of internal rotation will result in a loss of total motion (C).⁷

Reinold M, Gill T, Wilk K, Andrews J. (2010). Sports Health: A Multidisciplinary Approach. (2): 101-115

Upper Extremity Functional Tests

- Seated Medicine Ball Throw
 Single Arm Seated Shot Put Test
 Timed push up test
- Modified pull up test

- Upper Quarter Y Balance Test
- Closed Kinetic Chain Upper Extremity Stability Test
- Assessment of mechanics

Seated Medicine Ball Throw⁸

- Sit on the floor with back against the wall, legs extended and apart for balance
- Bring ball to chest and throw while keeping the back against the wall
- Best of 3 trials
- Males use 6 lb. ball, Females 4 lb. ball
- Formerly used by the NHL in their combine

Rating	Distance (Meters)
Excellent	5.76+
Good	5.00-5.75
Average	4.25-4.99
Below Average	3.50-4.24
Poor	0-3.49

Seated Medicine Ball Throw

- Highly reliable test of upper body power in older adults⁸
- Associations of Upper Body Power Tests and Upper and Lower Body Power in ROTC Cadets⁹
 - Push-up test, seated MB, vertical jump
 - Significant relationship between push up and MB in Females, but not males
- Reliable low cost alternative to isokinetic testing in clinical setting¹⁰
- Inexpensive, safe and repeatable

Single Arm Seated Shot Put Test¹¹

- Seated in a chair without armrests
- Feet and legs placed on chair in front
- Nonthrowing arm placed across the chest and a strap placed across the chest to secure the subject to the chair
- 6 lb. medicine ball
- 4 warm up puts and then 3 trials
- At least 90% symmetry in distance side to side
- Minimal detectable change
 - Dominant arm 17 inches
 - Non dominant arm 18 inches

Timed Push up Test¹¹

- Widely used in lots of settings to test upper body strength
 - Gym class, military tests
- Reliability, minimal detectable change and normative values
 - Significant reliability
 - 90% confidence in minimal detectable change represents true improvement (2 reps)
- How many you can do in 1 minute
 - Male: > 18 reps, Female: > 12 reps
- Also can do to exhaustion¹²
 - ► Male: >39, Female: >27
- Safe, inexpensive, repeatable, practical

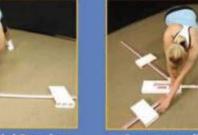
Modified Pull-up Test¹³

- Used in schools age 5-15
- Test of strength focused on the back, shoulder, forearm, and arm strength
- Complete as many as possible until break form or pause for more than 2 seconds
- Safe, inexpensive, repeatable, practical

Boys	Girls
$5-6 \ge 2$ $7 \ge 3$	5-6 <u>≥</u> 2
8 <u>≥</u> 4 9-10 <u>≥</u> 5	7 <u>≥</u> 3
11 ≥ 6 12 ≥ 7	8-15 > 4
13 <u>></u> 8	
14 <u>></u> 9	
15 <u>></u> 10	

Modified Pull-up Test

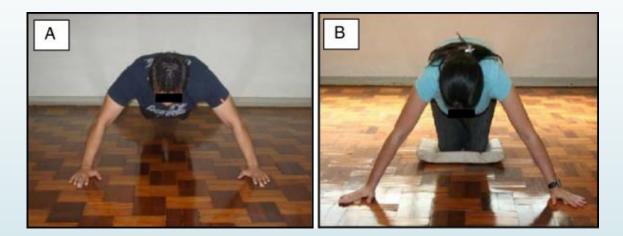
Adjustable bar positioned to allow participant to grab bar with back flat on surface. Strap hangs down 8 inches and chest has to touch strap.



Upper Quarter Y Balance Test^{14, 15, 16}

- Weight bearing on the contralateral limb
- Test medial reach, inferolateral reach, superolateral reach
 - Start with right and do in that order, repeat on left
 - Best of 3 trails, allowed 1 practice trail
- Reach as far as possible without loss of balance
 - Challenges balance, proprioception, strength and ROM
- Normalize reach distance
 - Measure arm length from C7 to the most distal tip of the right middle finger
- Must have good form
 - Cannot touch down with reach hand, fall off platform, shoved the sliding platform, used sliding platform for support, failed to come back to starting position, and lifted feet off floor

Inferomedial Reach


Upper Quarter Y Balance Test

- Reliable test for measuring UE reach in a closed chain position¹³
- No difference in baseball and softball players ¹⁶
- No difference in throwing and non-throwing in un-injured athletes ¹⁶
- Not at good measure of strength ¹⁰

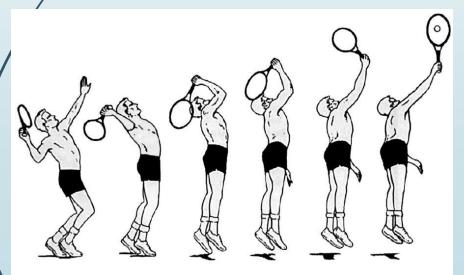
Closed Kinetic Chain Upper Extremity Stability Test^{17,18,19}

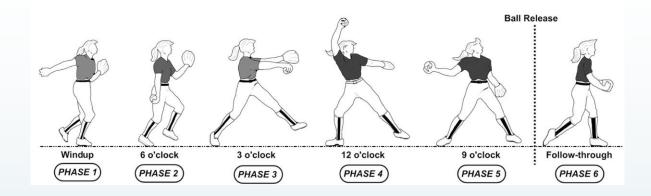
- Push up position, or modified push up position
- Hands 36 inches apart
- Count how many times one hand can touch the other hand in 15 secs
 - Hand must come back to the starting position each time
- 3 trials with rest up to 45 secs between sets

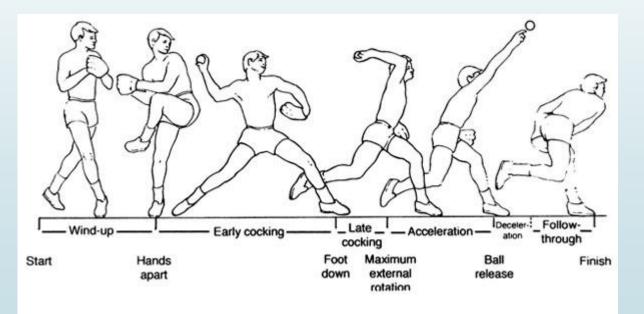
Closed Kinetic Chain Upper Extremity Stability Test

- Improvement of 3-4 touches is considered significant¹⁷
- Reliable tool for healthy, subacrominal impingement, and different levels of physical activity¹⁷
- Collegiate-level baseball players no differences existed in scores by position ¹⁸
- Clinically relevant for use in upper extremity function ¹⁸
- Safe, inexpensive, repeatable, practical

Outcome Measures


- Injury-Psychological Readiness to Return to Sport scale
 - ► 6 questions (confidence)²⁰
- FOTO
- SPADI
- DASH
- Bottom line: use something that is a valid measure




Windmill Pitching Phases

Mechanics

- Proper Mechanics are important
- Know your sport
 - Baseball is different than tennis
 - Don't have to be an expert
 - Position matters as well
 - Softball pitcher vs baseball pitcher
- Video Analysis

- Warm up
 - Break a sweat
 - Stretches
- Throwing Program
- Strength exercises
- Stretches
- ► Ice

Short Toss Program

		Phase I	Phase II	Phase III	Phase IV	Phase V
	Short Toss Feet	20	30	40	46	46
/	Rest time	12 sec/throw 6-8 mins/set				
	Throws	Set 1 15 Set 2 15 Set 3 20	Set 1 15 Set 2 15 Set 3 20	Set 1 15 Set 2 15 Set 3 20	Set 1 15 Set 2 20 Set 3 20	Set 1 15 Set 2 20 Set 3 20
	Intensity	Work to tolerance	Work to tolerance	Work to tolerance	Up to ½ speed	Up to ¾ speed

Short Toss Program

		Phase VI	Phase VII	Phase VIII	Phase IX
/	Short Toss Feet	46	46	46	Simulated Game
/	Rest time	12 sec/throw 6-8 mins/set	12 sec/throw 6-8 mins/set	12 sec/throw 6-8 mins/set	
	Throws	Set 1 20 Set 2 20 Set 3 20	Set 1 20 Set 2 20 Set 3 25	Set 1 15 Set 2 25 Set 3 25	
	Intensity	Mound, full speed	Mound, full speed: breaking ball 3:1	Mound, full speed: breaking ball 3:1	

Long Toss Program (Rest 10 mins between short and long toss)

		Phase I	Phase II	Phase III	Phase IV	Phase V
	Long Toss Feet	65% target distance	70% target distance	75% target distance	80% target distance	85% target distance
/	Rest time	12 sec/throw				
	Throws	25	25	25	25	25
	Intensity	to tolerance				

Long Toss Program (Rest 10 mins between short and long toss)

		Phase VI	Phase VII	Phase VIII	Phase IX
	Long Toss Feet	90% target distance	95% target distance	100% target distance	Simulated Game
/	Rest time	12 sec/throw	12 sec/throw	12 sec/throw	
	Throws	25	25	25	
	Intensity	to tolerance	to tolerance	to tolerance	

- Soreness Rules for advancement to the next phase
 - If sore more than 1 hour after throwing, or the next day, take 1 day off and repeat the most recent throwing program workout
 - If sore during warmup but soreness is gone within the first 15 throws, repeat the previous workout. If shoulder/elbow becomes sore during this workout, stop and take 2 days off. Upon return to throwing, drop down 1 phase.
 - If sore during warm-ups and soreness continues through the first 15 throws, stop throwing and take 2 days off. Upon return to throwing, drop down 1 phase.
 - If no soreness, advance 1 phase every throwing day.
 - Do not advance more than 2 phases per week.
 - Vanderbilt Sports Medicine Interval Throwing Program for Little League Age Athletes
 - Michael J. Axe, MD American Journal of Sports Medicine Vol 24 No. 5 1996 Interval Throwing Program for Little League aged Athletes

RTP Guided Matrix

	Phase 1 - Early Rehab to return to light training/exercise
/	No Pain at Rest
	Pain less than 4/10 during activity
	Pain lasting less than 48 hours after activity
	Acceptable scores on psychometric testing (FOTO, DASH, ASES, KJOC)
	No/Trace Edema
	100% symmetrical ROM to other UE (for overhead athletes, check total arch)
	Within normative ranges for sport when available
	Minimum of 5/5 per MMT of involved and adjacent joints
	FMS score >14

Phase 2 - to allow for graduated return to sport training
Upper Quarter Y-Balance Test (Right vs. Left symmetry)
Single Arm Seated Shot Put Test (< 10% difference Right vs. Left)
Timed Push-Up Test (Men: > 18 reps? , Female: > 12 reps?)
Modified Pull-Up Test (Men: > ???, Female: ???)
Closed Kinetic Chain Upper Extremity Stability Test (Male: *** reps. Female: *** reps) (>21 touches)

Phase 3 - To allow for full return to sport participation
Throwing
Beyond body weight, weight bearing activities (???)
Greater than body weight, pulling activities (???)
Sport/position specific progressions

Key Points to Remember ^{22,23}

- Collaborative decision/Collaborative effort
- Fear of re-injury
 - Could be biggest thing holding back the athlete
- Numerous factors
- Objective data is important
- Mimic the sport, know the sport
- Remember Rehab improvement is Non-linear process
 - Important to tell your athlete

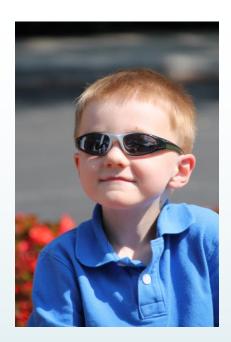
Other things

- Don't forget about the whole body ²⁴
 - Baseball players diagnosed with ulnar collateral ligament tears demonstrate decreased balance compared to healthy controls
- FMS or SFMA
- Thoracic ROM and movement
- Core strength
- Hip mobility
- Bilateral comparisons

References

- . Borms D, Maenhout A, Cools AM. Upper quadrant field tests and isokinetic upper limb strength in overhead athletes, Journal of Athletic Training. 2016;51(10): 789-796.
- 2. Stratford, PW, Balsor BE. A Comparison of Make and Break Tests Using a Hand-Held Dynamometer and the Kin-Com. Journal of Orthopedic and Sports Physical Therapy. 1994; 19(1): 28-32.
- 3. Boone D, Azen S. Normal range of motion of joints in male subjects. Journal of Bone & Joint Surgery. 1979; (61):756-759.
- 4. Downey, P. A., I. Fiebert, and J. B. Stackpole-Brown. Shoulder range of motion in persons aged sixty and older. *Physical Therapy*. 1991; 71: S75.
- 5. Crockett HC, Gross LB, Wilk KE, Schwartz ML, Reed J, O'Mara J, Reilly MT, Dugas JR, Meister K, Lyman S, Andrews JR. Osseous adaptation and range of motion at the glenohumeral joint in professional baseball pitchers. The American Journal of Sports Medicine. 2002 Jan 1;30(1):20-6.
- 6. Ellenbecker TS, Roetert EP, Bailie DS, Davies GJ, Brown SW. Glenohumeral joint total rotation range of motion in elite tennis players and baseball pitchers. Medicine and Science in Sports and Exercise. 2002 Dec 1;34(12):2052-6.
- 7. Reinold M, Gill T, Wilk K, Andrews J. Sports Health: A Multidisciplinary Approach. 2010;(2): 101-115
- 8. Harris C, Wattles AP, DeBeliso M, Sevene-Adams, PG, Berning JM, Adams KJ. The Seated Medicine Ball Throw as a Test of Upper Body Power in Older Adults. Journal of Strength and Conditition Research. 2011; 25(8): 2344-2348.
- 9. Gust A, Jorissen K, Liguori G, Schuna J, Hilgers-Greterman S, christensen, B, Redenius N. Associations of Upper Body Power Tests and Upper and Lower Body Power in ROTC Cadets. 2012. North Dakota State University Research Poster.
- 10. Borms D, Maenhout A, Cools AM. UpperQuadrant Field Tests and Isokinetic Upper Limb Strength in Overhead Athletes. Journal of Athletic Training. 2016;51(10):789-796.
- 11. Negrete RJ, Hanney WJ, Kolber MD, Davies GJ, Ansley MK, McBride AB, Overstreet AL. Reliability, Minimal detectable change, and normative values for testes of upper extremity function and power. J Strength Cond Res. 2010;24: 3318-3325.
- 12. Push Up Test at Home, <u>www.topendsports.com/testing/tests/home-pushup.htm</u>

References


- 13. Ervin RB, Fryar CD, Wang CY, Miller IM, Ogden CL. Strength and body weight in US children and adolescents. Pediatrics. 2014 Sep 1;134(3):e782-9.
- 14. Gorman PP, Butler RJ, Plisky PJ, Kiesel KB. Upper quarter Y balance test: reliability and performance comparison between genders in active adults. J Strength Cond Res. 2012;26 (11): 3043-3048.
- 15. Westrick RB, Miller JM, Carow SD, Gerber JP. Exploration of the Y-balance test for assessment of upper quarter closed kinetic chain performance. International Journal of Sports Physical Therapy. 2012;7(2):1139-147.
- 16. Butler RJ, Myers HS, Black D, Kiesel KB, Plisky PJ, Moorman CT, Queen RM. Bilateral Differences in the Upper Quarter Function of High School Aged Baseball and Softball Players. The International Journal of Sports Physical Therapy. 2014; 9(4): 518-524.
- 17. Tucci HT, Martins J, Sposito G, Camarini P, Oliveira A. Closed kinetic chain upper extremity stability test (CKCUES test): a reliability study in persons with and without shoulder impingement syndrome. BMC Musculoskeletal Disorders. 2014;15: 1474-2474.
- 18. Roush JR, Kitamura J, Chad Waits M. Reference values for the closed kinetic chain upper extremity stability test (CKCUEST) for college baseball players. North American Journal of Sports Physical Therapy. 2007;2(3):159-163.
- 19. Butler R, Arms J, Reiman M, Plisky P, Kiesel K, Taylor D, Queen R. Sex differences in dynamic closed kinetic chain upper quarter function in college swimmers. *Journal of Athletic Training*. 2014;49(4):442-446.
- 20. Glazer DD. Development and preliminary validation of the Injury-Psychological Readiness to Return to Sport (I-PRRS) scale. Journal of athletic training. 2009 Mar;44(2):185-9.
- 21. Axe MJ, Snyder-Mackler L, Konin JG, Strube MJ. Development of a distance-based interval throwing program for Little League-aged athletes. The American journal of sports medicine. 1996 Sep 1;24(5):594-602.
- 22. Kevin E. Wilk PT, DPT, FAPTA "Sport specific testing for the lower extremity in athletes: Criteria to return to sports" TCC2 016 Las Vegas, NV.
- 23. Dr. Clare Ardern, MD "Is your injured athlete really ready to RTP?" TCC 2016 Las Vegas, NV.
- 24. Garrison J, Arnold A, Macko M, Conway J. (2013). Baseball Players Diagnosed with Ulnar Collateral Ligament Tears Demonstrate Decreased Balance Compared to Healthy Controls. *Journal of Orthopaedic & Sports Physical Therapy*. (43):752-758.
- 25. Google images. www.google.com.

References

- Negrete RJ, Hanney WJ, Kolber MD, Davies GJ, Ansley MK, McBride AB, Overstreet AL. Reliability, Minimal detectable change, and normative values for testes of upper extremity function and power. J Strength Cond Res. 2010;24: 3318-3325.
- Negrete RJ, Hanney WJ, Kolber MJ, Davies GJ, Riemann B. Can upper extremity functional tests predict the softball throw for distance: a predictive validity investigation. International Journal of Sports Physical Therapy. 2011;6(2):104-111.
- Falsone SA, Gross MT, Guskiewicz KM, Schneider RA. One-arm hop test: reliability and effects of arm dominance. Journal of Orthopedic & Sports Physical Therapy. 2002;32(3):98-103.
- Reinold M, Escamilla R, & Wilk K. (2009). Current Concepts in the Scientific and Clinical rationale behind Exercises for Glenohumeral and Scapulothoracic Musculature. Journal of Orthopaedic & Sports Physical Therapy. (39):105-117.
- Reinold M, Gill T. (Jan 2009) Current Concepts in the Evaluation and Treatment of the Shoulder in Overhead Throwing Athletes, Part 1: Physical Characteristics and Clinical Examination. Sports Health: A Multidisciplinary Approach. Published by SAGE on behalf of: American Orthopaedic Society of Sports Medicine.
- Reinold M, Gill T, Wilk K, Andrews J. (2010). Current Concepts in the Evaluation and Treatment of the Shoulder in Overhead Throwing Athletes, Part 2: Injury Prevention and Treatment. Sports Health: A Multidisciplinary Approach 2:101. Published by SAGE on behalf of: American Orthopaedic Society of Sports Medicine.
- Wilk K, Arrigo C, Andrews J. (1997). Current Concepts: The Stabilizing Structures of the Glenohumeral Joint. Journal of Orthopaedic & Sports Physical Therapy. 25(6): 364-379.
- Wilk K, Arrigo C, Andrews J. (1997). The Physical Examination of the Glenohumeral Joint: Emphasis on the Stabilizing Structures. Journal of Orthopaedic & Sports Physical Therapy. 25(6): 364-379.
- Wilk K, Macrina L, Fleisig G, et al. (2011). Correlation of Glenohumeral Internal Rotation Deficit and Total Rotational Motion to Shoulder Injuries in Professional Baseball Pitchers. American Journal of Sports Medicine. (39): 329-335.
- Wilk K, Hooks T, and Macrina L. (2013). The Modified Sleeper Stretch and Modified Cross-body Stretch to Increase Shoulder Internal Rotation Range of Motion in the Overhead Throwing Athlete. Journal of Orthopaedic & Sports Physical Therapy. 43(12): 891-894.
- Garrison JC, et al. (2012). Shoulder Range of Motion Deficits in Baseball Players With an Ulnar Collateral Ligament Tear. American Journal of Sports Medicine. (40): 2597-2603

Thank You

